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SUFFICIENT STATISTICS IN THE CASE OF INDEPENDENT 
RANDOM VARIABLES' 

BY L. BROWN 

Cornell University 

1. Introduction. In many statistical situations the information obtained from 
the observation of n-independent identically distributed real random variables 
Xi, * * *, X. can be condensed into one "sufficient statistic", O(x,, * * *, xn). In 
a well known sense the statistic 4p contains as much information about the distri- 
bution of X,, * - -, X, as do the observations x1, *. *, xYn themselves [1]. 

The Neyman factorization theorem [6], [9] gives one characterization of the 
situations in which a sufficient statistic can be employed. Suppose the distribu- 
tion of each Xi is a priori known to be one of the distributions in the set 
{Po(.): 0e } where each Po(x) has density po(x) with respect to a fixed o 

finite measure g. Neyman's theorem tells how the densities {po(.)l must be 
related to each other through any statistic which is sufficient for the problem. 

A more definitive characterization valid under certain additional assumptions 
of the densities po( * ) in terms of the sufficient statistic is given by Koopman 
[7], and Darmois [3]. A further related result was proved by Dynkin [4]. This 
characterization states exactly what the functional form of the possible densities 
must be-specifically, that each density must be a member of a certain ex- 
ponential family of densities (sometimes called a Koopman-Darmois family). 
This family is determined by the sufficient statistic. 

The assumptions in the theorems of [3] and [7] include significant limitations 
on the form of the densities and on the form of the sufficient statistics. Dynkin 
[4] states a theorem in which a very minimal assumption is made on the form 
of the sufficient statistic, but the form of the densities involved is significantly 
restricted. 

In the first main theorem of this paper-Theorem 2.1-a different approach 
is used. Almost the entire burden of the assumptions is on the form of the sta- 
tistics involved. The second main theorem-Theorems 8.1 and 8.1'-makes one 
assumption on the form of 4 which is generally satisfied. The remainder of its 
hypotheses are very weak. The conclusion is of a local nature, as opposed to the 
global nature of the conclusion of Theorem 2.1. These results are a fairly com- 
plete characterization of the situation when the conclusion is valid that each 
density is a member of a certain exponential family of densities. 

Only the case of a real sufficient statistic is considered in detail in this paper. 
Some analogous results are clearly true for n-dimensional or even more general 
sufficient statistics. I hope to pursue these questions in a later paper. 

Received 30 December 1963. 
1 This research was supported in part by the Office of Naval Research contract number 

Nonr-266(04) (NR 047-005). 
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Section 2 of this paper contains definitions and a statement of the first main 
theorem-Theorem 2.1. 

Section 3 contains examples which clarify the nature and importance of the 
assumptions in Theorem 2.1 and Theorem 8.1. Example 3.3 is of particular in- 
terest. First, it shows the falsity of a fairly natural conjecture. Second, it shows 
that a result of Dynkin [4] is false as stated. A possible corrected version of 
Dynkin's theorem is given at the end of Section 3. 

The next three sections contain the proof of Theorem 2.1. Section 4 contains 
a point-set-topological result. The result of Section 5 is partly measure theoretic 
and partly topological. In Section 6 these results are used to complete the proof 
of Theorem 2.1. 

The next section of the paper is devoted to corollaries and remarks which 
weaken the hypotheses of Theorem 2.1 regarding p and p. 

The second main theorem of this paper which applies to the case when the 
sufficient statistic is some type of mean is stated in Section 8. Its proof, which is 
sketched in that section, relies heavily on the methods of proof used in proving 
Theorem 2.1. 

2. Definitions and statement of the main theorem. Let {p(x, 0): 0 ? e} be 
a family of probability densities with respect to Lebesgue measure, denoted by 
,on the intervalI = (a, b), -oo < a < b < oo, of the real line, E'. 
Let Xi, X2, * *, Xn be n independent random variables each having the 

density p(., 0) for some 0 - E). Then [6], [9], the statistic p(xi, * * *, x") is suf- 
ficient for 0 (or for {p} ) on the basis of Xi, * , Xn if and only if there exist 
functions v and w such that for all 0 E e 

n 

(2.1) JI P(xi, 0) = v(xi, X nW, xn)w(O(Xl, * , xn), 0) 
i-~1 

for almost all xl, ,xn in In = I X I X .. X I. We shall use the term 
sufficient (for {p} ) when a factorization of the type 2.1 is satisfied even though the 
functions p(x, 0) may not be probability densities. 

q: I X e -- El is said to be an n-parameter exponential family of functions if 
there exist real valued functions C, Qi, T , and h such that for all 0 E ) 

q(x, 0) = C(0)h(x) exp { Qi(0)Ti(x)} 

a.e.(,) 

We state an assumption which we shall frequently refer to. 
ASSUMPTION 2.1. Each density p(x, 0) is equivalent to Lebesgue measure on 

I, e.g. For each 0 and A C I, 

Lp(x,0)dx = 0 if andonlyif Ldx = 0. 

When Assumption 2.1 is satisfied the Neyman factorization can be rewritten 
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in the form 
n n 

(2.2) H i p(xi , ) = IP(Xi, G) W(p(XI, *. * * Xn), 0) 

a.e. (90, 

where Go is any fixed parameter in E. This result is due to Bahadur [1]. (I will 
sometimes refer to (2.2) (or (2.3) below) as the N-B factorization.) In this 
case it is convenient to rewrite (2.2) as 

n 

(2.3) II r(xi, 0) = w(4(xl, * *, xn), 0) a.e. (An) 

where 

(2.4) r(x, 0) = p(x, 0)/p(x, 00). 

As a consequence of Assumption 2.1, r is well defined. 
Let An(S) denote the Lebesgue measure of the set S c En. If 4: In El is 

measurable, z e IX"1, B E E' is Borel measurable (i.e. B E 63) and A E I is measur- 
able, define 

MO(z, B, A) = ,{x: x E A, +(x, z) E B}. 

In words MO (z, B, A) is the cross sectional measure at z E I" of the subset 
(x, z): x E A} nf 4-(B) of I. The subscript 4 will usually be omitted. 
It is now possible to state the first main theorem of this paper. 
THEOREM 2.1. Let +(xi, ** *, Xn) be sufficient for {p(x, 0): 0 E E} on the basis 

of n independent observations, n > 2. Suppose that for each 0, p(, 0) satisfies 
Assumption 1. Suppose also that there exists a set A c I with ,(A) > 0 such 
that ,u(B) = 0 implies M(z, B, A) = O for all z E In-' and such that 4( *, *, t) 
is continuous on A X I for each E In-2. Then {p(, 0)} is a one-parameter ex- 
ponential family. 

The following lemma is given so that the reader may better understand the 
condition imposed on 4 by the hypotheses of Theorem 2.1. The hypotheses of the 
lemma are frequently satisfied in statistical problems. In a sense, Theorem 8.1 
generalizes this lemma. 

LEMMA 2.1. Suppose ?(xi, X*** Xn) = JJflZ== 41(xi) or 4(xi, * , xn) 
> i,1t(xi) where f( * ) is continuous and in the first case positive on I. Suppose 
there exists a measurable set A c I, Au(A) > 0 on which 41 is absolutely continuous 
and if'(x) > 0 for all x - A. Then the hypotheses of Theorem 2.1 are satisfied. 

PROOF. ,u(B) = 0 implies ,{x: x E A, A1'(x) E B} = 0. The remainder of the 
proof is trivial. 

3. Examples, and comments on a paper of Dynkin. These examples are de- 
signed to illustrate the nature of the hypotheses included in Theorem 2.1 and to 
show why these hypotheses are included in the statement of the theorem. 

The first example illustrates the need for Assumption 2.1. 
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EXAMPLE 3.1. Let E = E2 and let 

p(x, (a, b)) = C(a, b)xb, 1 < x < 2 

(3.1) = C(a, b)laxb, 4 ? x ? 5 

= 0, otherwise 

where A is a fixed positive constant 1 # 1. The statistic x1x2 is sufficient for {p} 
on the basis of two independent observations X1 and X2 since 

(3.2) p(x1, (a, b))p(x2, (a, b)) = C2(a, b)h(xi, X2)co(XlX2, (a, b)) 

where 
(y, (a, b))= yb < y < 4 

(3.3) = ayb 4 < < 10 

2ayb 16 < Y 25; 

h(xi,x2) = 1 1 ?x1i2 or 4?xi?5, 

and l-< X2- ?2 or 4 < X2-< 5, 

-0 otherwise. 

In spite of the fact that there is a real sufficient statistic for 0, it is easy to see 
that the conclusion of Theorem 1 is not valid. {p} is, in fact, a two parameter 
exponential family, rather than a one-parameter family. This does not provide a 
counterexample to Theorem 1 since each p does not satisfy Assumption 2.1. 
The facts that each p is positive on two disjoint intervals and that {pI is a two 
parameter family are related. See Corollary 7.2. 

The necessity for some assumption concerning the continuity of q5 is shown 
by a similar example. 

EXAMPLE 3.2. Let e = E and let 

p(x, (a, b)) = C(a, b)xb, 1 ? x ? 2 

(3.4) =(a, b)3a(X + 2)b, 2 < x < 3 

- 0, otherwise 

where C is chosen so that p is a probability density. Let 4(xI, X2) = (X1)VI(X2) 
where 

AV(x) =x 1 < X _ 2 

(3.5) -X+2 2?x_3 

= x otherwise. 

Then 4 is sufficient for {p} on the basis of two independent observations X1 and 
X2 because of the factorization 

(3.6) p(x1(a, b))p(x2, (a, b)) = C(a, b)h(x1, x2)CO(q5(xl , x2), (a, b)), 
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where X is defined by (3.3) and h is appropriately chosen. 
In this example {p} is not a one-dimensional exponential family but it satisfies 

Assumption 2.1 and has a real sufficient statistic. This example does not provide 
a counterexample to Theorem 2.1 since 4 is not continuous. 

In the following example all the assumptions of Theorem 1 are satisfied except 
that q does not satisfy the assumption that A(B) = 0 implies M(y, B, A) = 0. 
This example also provides a counterexample to Theorem 2 of [4]. 

EXAMPLE 3.3. Let S = {sk, } l = 1, 2, .. , k = 1, 3, 5, ... , 21- 1 be a count- 
able set of real numbers satisfying the following conditions: 

(a) sm,n < sk, for m/2" < k/21; 

(b) 0 < sk l < 1; 

(3.7) (c) S is dense in the interval [0, 1]; 

(d) 8k1,11 '8k2,12 = Sm1,nl Sm2,n2 implies (k1 , 11) = (m1 , n1) or (k1 , 11) 
(M2, n2). 

Let c(x) be the usual Cantor function defined on [0, 1] ([5], p. 83). c(x) takes 
the values k/21 with k odd, k ? 21 - 1 almost everywhere in [0, 1], say on the 
set C c [0, 1]. Let d be the unique real continuous function defined on [0, 1] 
satisfying d(x) = Sk,l if c(x) = k/21. (3.7) (a), (b), and (c) guarantee that d 
exists. 

Let c (xi, x2) = d(x1) d(x2). If x1 E C and X2 E C then using (3.7) (d), c(x1) 
and C(X2) are determined uniquely (up to transposition of xi with x2) by the 
value d(xi) d(x2). Thus there exists a function X such that 

(3.8) C(Xl)C(X2) = Wa((Xll, x2)) onC X CforaEE'. 

Also 

(3.9) da(xi) da(X2) = 4"'(xl, X2). 

These two equations show that 4 is sufficient for the family 5 of densities on 
[0, 1] consisting of all Kl(a)ca(x) and of all K2(a) da(x). As a consequence of 
(3.7) (d), 5 cannot be written as a one-parameter family of densities. This ex- 
ample is not a counterexample to Theorem 1 for it can be shown that there does 
not exist an A with ,l4(A) > 0 such that for any B, /h(B) = 0 implies 

MO(y, B, A) = 0. 
Example 3.3 provides a counterexample to Theorem 2 of [4]. (Actually, in 

order to satisfy all the hypotheses of [4], 4 (x1, X2) should be chosen as d(x1) d(x2) 
on C X C and as (XI, X2) or some statistic which is equivalent to (Xl, x2), 
if x1, X2 9 C X C.) In order to correct Theorem 2 of [4] it is enough (using the 
notation of [4]) to assume that the densities in the family 7r are continuously 
differentiable in A, rather than "piece-wise smooth" in A. This condition is suf- 
ficient to insure that the statement in the next to last sentence of the proof of 
Theorem 2 of [4] is correct. 

The following theorem-Theorem A-which combines a corrected version of 
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Theorem 2 and Theorem 3 of [3] is given for comparison with Theorem 2.1 of 
this paper. 

A statistic 4 defined on a topological measure space G is called trivial if there 
exists an open subspace 0 C G such that 4 is equivalent to the identity statistic 
on 0: that is, such that there exists a measurable function co for which 

(3.10) x = co(W(x)) for almost all x E S. 

THEOREM A. Let {p(x, 0)} be a family of probability densities on an interval I 
such that for each 0, p(x, 0) is continuous on I, is bounded away from 0 on I, and is 
continuously differentiable on I. Suppose there is a non-trivial, sufficient statistic 4 
for 0 on the basis of n -independent observations. Then {p} is a p-parameter expo- 
nential family where n > p. 

PROOF OF THEOREM A. The hypotheses of Theorem A are sufficient to make 
valid the conclusion of the next to last sentence of the proof of Theorem 2 in [4], 
and hence to make valid the conclusion of that theorem. Then using the notation 
of [3] the rank p of the familyr is less than n and { fIl== rk(xi , d')}, k = 1, 2, ... p 
is a sufficient statistic if the rk(*, 0') are linearly independent and not constant. 
Then, using Theorem 3 of [4], {p} is a p parameter exponential family. This 
completes the proof of Theorem A. 

By taking cross-sections, as is done in the proof of Theorem 2.1 (see 6.7), it 
can often be concluded from an examination of 4 that p is in fact a specific value 
considerably less than n - 1. 

4. Proof of Theorem 2.1-Part 1. The hypotheses of the Theorem 4.1 of this 
section are chosen so that this theorem can be easily applied in the proof of 
Theorem 2.1. Theorem 4.2, which follows easily from Theorem 4.1 has a more 
natural set of hypotheses. Theorem 4.2 should be compared to Theorem A and 
to Theorem 2.1, for it has the same conclusion as these two theorems, but a 
slightly different set of hypotheses. 

THEOREM 4.1. Let A c I be a set of points such that for some point, say x' E A 
there exists a sequence {xi} with xi E A, i = 1, 2, * , and lim xi = x'. Suppose for 
each 0 E ?), r(*, 0) is a continuous function from I (a, b) into El* (the one point 
compactification of E'), and, for each 0 - E , r(*, 0) satisfies Assumption 1. Suppose 
there exists a continuous function 4: A X I -> El and a function w such that 

(4.1) r(xi, 6)r(x2, 0) = CO(4(xl, x2), 0) 

for all (Xl X X2) E A X I and all 0 - 0 . Then there exists an interval K c I such 
that K n A is not empty and such that for a fixed value 6o E E), there exist functions 
C and Q such that 

(4.2) r(x, 0) = C(0) {r(x, o) } Q(?) 

for all x E K nA and all 0 - E). 
PROOF. Several preliminary results are needed. These will be stated and 

proved as lemmas. 
Throughout this proof the hypotheses of Theorem 4.1 are assumed to be 
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satisfied; and 0' E E) will denote any fixed parameter such that r(*, 0') is not a 
constant on all of I. (If no such value of 0' exists then r(x, 0) = C(0) for all x 
and 0, and the conclusion of the theorem is valid.) 

LEMMA 4.1. Suppose r(, 0') is constant on some interval J c I. Then either 
4 (x', y) is constant for y E J, or there exists an interval K c I such that x' E K and 
r(x, 0) = C(O) for x E K nA and all 0 E e). 

PROOF. Suppose r(., 0') is constant on an open interval J but ?)(x', y) is not 
constant for y EJ. Since 0 is continuous there is an open interval 

(4.3) D c {z: 3y eJ, 4(x', y) = z}. 

There exists an e> 0 (not depending on 0') such that Ix - x'l < e, x E A, implies 
there exists a y EJ such that O(x, y) E D. (If this were not true, 4 would not be 
continuous at any point x', y such that y E J, 0 (x', y) E D.) Thus there is a 
y E J such that 

(4.4) r(x, 0')r(y, 0') = w(,((x, y), 0') = r(x', 0')r(y, 0'). 

Hence r(x, 0') = r(x', 0') for all x E A such that Ix - x'l < e. Let K = fx: 
{x - x'j < c}. Then r(x, 0) = C(0) for x E K n A. This completes the proof of 
the lemma. 

It is only necessary for the remainder of the proof to deal with the case where 
r(*, 0') constant on an interval J implies +)(x', * ) is constant on J; for if this 
condition is not satisfied then according to Lemma 4.1 the conclusion of Theorem 
4.1 is valid. In the following lemmas we make that assumption. 

LEMMA 4.2. Suppose r( *, 0') constant on the interval J c I implies 4 (x', *) is 
constant on J. Let L c I be an interval (not necessarily open) of positive length. 
Suppose x1 is an extreme value of r( *, 0') on L (i.e. xi is a minimum or maximum 
of r on L). Then either 4 (x', xi) is an extreme value of 4)(x', * ) on L, or there exists 
an interval K c I such that x' E K and r(x, 0) = C(0) for all x E K n A and all 

PROOF. Suppose 4(x', xi) is not an extreme value of 4 on L and suppose 
r(., 0') assumes its minimum on L at x1 . Then there exists an open interval D 
satisfying (4.3), and satisfying +(x', x1) E D. Using continuity there is an e > 0 

such that Ix - x'l < e, x E A implies there exists a y eJ such that O (x, y) = 

+(x', xi), and implies that + (x, x1) e D. For such an x 

(4.5) r(x, 0')r(y, 0') = )-(4)(x, y), 0') = infeD (4), 0') = r(x', 0')r(xi, 0'). 

According to (4.5), 

(4.6) r(y, 0') = inf {r(z, O' ): +(x, z) E D}. 

Since xi E {z: + (x, z) E D}, r(y, 0') _ r(xi, 0'). By assumption, r(x1 , 0') < 

r(y, 0'). Hence r(y, 0') = r(xi, 0'). Then, using (4.5), r(x, 6') = r(x', 0'). Thus 
there is an open K, x' e K, such that x E K n A implies r(x, 0) = C(0). 

The procedure if r(x, 0') is a maximum is entirely analagous. This completes 
the proof of Lemma 4.2. 

LEMMA 4.3. For any interval J c I assume r(*, 0') constant on J implies + (x', *) 
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constant on J and r(xi, 0') an extreme value of r(*, 0') on J implies Ob(x', xi) an 
extreme value of ? (x', * ) on J. Then r(yi, 0') = r(y2, 0') (if and) only if for any 
x E A,) (x, yl) = +5(x, y2). 

PROOF. Suppose r(yi, 0') = r(y2, 0') but +(x', yi) # q(x', y2). Assume 
Yl < Y2. Let 

Si = {x: q(x', x) = +(x', yl), x E II) 

S2 = {x: . (', x) = +(x', Y2), x E I}. 

Si and S2 are closed disjoint sets. Let y be a point such that y, < y < Y2 and 
ye Si U S2. Let 

(4.8) 
Y~~~3 = SUP{X: X ESl) X < Y}, 

(4.8) =sp :xS,<} 
Y4 = inf{x:xES2,x > y}. 

Then y3 E Si , Y4 E S2. The function + (x', * ) assumes its extreme values on 
[Y3 , Y4] at y3 and Y4 . Hence Y3 and y4 must be the extreme values of r (*, 0') on 
[Y3, y4]. Hence r(y, 0') = r(y3, 0') = r(y4, 0') for all y E [y3, y4]; in contradiction 
to the hypotheses of the lemma. This completes the proof of the lemma. 

For the remainder of the proof of the theorem, the special hypotheses of 
Lemma 4.3 are assumed true; for if they are not true Lemmas 4.1 and 4.2 show 
the conclusion of the theorem to be valid. 

Suppose there are parameters 0', 0" E E) such that there does not exist a real 
C and k and an interval K for which r(x, 0") -C(O')rk(x, 0') for x E A n K; 
i.e., that fr( ,0): OE E)} isnotoftheform (4.2) onA nK.ThenonA X I 

(49) r(x1, 0") r(x2, 0") (qs(xl, x2), 0") 
_-(s(X1, X2); 0', 0", k). 

rk(xl, 0') rk(X2, 0') wk ((Xl,X2), 0') 

From these facts it is easily checked that for any k, the function r(x, 0" )/rk(x, 0') 
satisfies the hypotheses of Lemma 4.3 (including the hypotheses of Theorem 4. ). 
There must exist a k, Xl , x2 such that r(x1, 0') # r(x2 , 0') (and hence c (x', xi) - 
c(x', X2)) but r(x1, 0")/rk(xi, 0') = r(x2, 0")/rk(x2, 0'). It follows that c in 
(4.9) is not a 1-1 function, but this contradicts Lemma 4.3. This completes the 
proof of Theorem 4.1. 

The next theorem may be of some independent interest, as it is another theorem 
belonging to the same class of theorems as Theorem 2.1. 

THEOREM 4.2. Suppose for each 0, p(x, 0) is a continuous function from I = 

(a, b) into El* (the point compactification of E1), and for each 0, p(x, 0) satisfies 
Assumption 1. Suppose there exists a real-valued function 4 which is continuous as 
a function from I' into El and which is sufficient for 0 on the basis of n-independent 
observations Xl, X2, *.*, X., n > 2. Assume the Neyman-Bahadur factorization 
(2.2) holds everywhere in I', i.e. 

n n 
( ) P(xi , 0) = (II p(Xi 0o)) W(4(Xl X , XX)) 

for (xl, X* ,x 6)eI8. 
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Then { p} is a one-parameter exponential family of densities. 
Note: It is not necessary in Theorem 4.2 to assume that the functions p(x, 0) 

are probability densities. 
PROOF. Let r(x, 0) = p(x, 0)/p(x, 0) for some fixed 0 E ?. As remarked 

previously I| ==- r(xi, 0) = WQ(xi, xl , ** *, x.), 0). If n > 2 fix y3, * Yn e In 
Then 

n 

r(x1, 0)r(x2 , 0) = w(4x,l I X2; Y3, **X Yn), 0)/]I r(yi, 0) 

= CO(f(Xl, X2), 0). 

It is easy to finish checking that {r} satisfies the hypotheses of Theorem 4.1 
where A c I can be any set. In particular, Theorem 4.1 then states that every 
x - I has a neighborhood such that {r} is an exponential family on that neighbor- 
hood. It is easily checked that this can be true only if {r} is an exponential 
family on I. Since p(x, 0) = p(x, Oo)r(x, 0), {p} is also an exponential family. 
This completes the proof of Theorem 4.2. 

5. Proof of Theorem 2.1-Part 2. The important result of this section, so 
far as the proof of Theorem 2.1 is concerned, is that for each 0, r is a continuous 
function from I into E'*. This result is contained in Theorem 5.1. 

LEMMA 5.1. Let 4: I X I -1 E1 be continuous. Let A be a measurable subset of 
I = (a, b) such that for eachfixed y e [c, d](-oo < a < c < d < b < oo )and 
any subset B E ?, (the measurable subsets of E') Au(B) = 0 implies M(y, B, A 0. 
Then for any fixed B e ?, M( *, B, A) is continuous as a function on [c, d]. 

PROOF. Each of the following assertions will be proved as they are stated. 
(1) B an open interval, and A a closed set implies M(*, B, A) is continuous: 

Let B = (a, b), Bk = (ak, bk) with ak \ a and bk l b (strictly decreasing and 
increasing to). Then M(y, Bk, A) A M(y, B, A) for each y e [c, d]. Using the 
uniform continuity of 4 on A X [c, d], for every given yO e [c, d] and e > 0 there 
exists a neighborhood Nk of yo such that y, z e Nk imply 

(5.1) M(y, Bk, A) _ M(z, BA , A) + Ek < M(z, B, A) + sk 

Let yk -- yo such that X = limk_. M(yk, B, A) )lim inf,,y M(y, B, A). Then 
yc Nk implies M(y, Bk, A) X + k so that 

(5.2) M(yo, B, A) = limk ..o M(yo, Bk, A) < X = lim infy,o M(y, B, A). 

Using an analogous procedure, 

(5.3) M(yo, B, A) _ lim supy+z.o M(y, B, A), 

(5.3) and (5.2) together establish the truth of Assertion 1. 
(2) If B is open and A is closed, M is lower semi-continuous, l.s.c., (i.e., 

satisfies (5.2)). If B is closed and A is closed, M is upper semi-continuous, 
u.s.c., (satisfies (5.3)). 

If B is open, it is the union of a countable number of disjoint open intervals 
3k, B = U'=1 Sk. Using Assertion 1, M(*, Uk=1 1Ak, A) is continuous. For any 
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fixed y E [c, d], M(y, *, A) is an absolutely continuous set function on (.C, ,u) 
by the hypothesis of the lemma. Hence M(y, Ul' k, A) -*> M(y, B,A) asn-> 00 

7 

and M(y, Ul'3k, A) is an increasing sequence (in n). Thus M(y, B, A) is the 
pointwise limit of an increasing sequence of continuous functions, which implies 
it is l.s.c. If B is a closed set, M(y, B, A) = lu(A) - M(y, BC, A) where BC = 

E' - B. B' is open, so that M(y, BC, A) is l.s.c., and M(y, B, A) is u.s.c. 
(3) M(y, *, A) is locally uniformly (in y) absolutely continuous as a set 

function on (2, ,u): Suppose this is not so. Then there exists an e > 0, a de- 
creasing sequence of nested sets yi , and a sequence yi such that M(y , -yi , A) > e 

but ,u(yj) -O 0. Since Lebesgue measure is regular we may assume the -Yj are 
closed nested sets without any loss of generality. Since [c, d] is a closed interval 
the sequence yi has an accumulation point, say yo E [c, d]. Using (2), M (yo , n yi, 
A) _ lim supyj .y0 M(y j, yi, A) > e > 0. Since .(fnyi) = 0, this contradicts 
the hypothesis of the lemma, proving (3). 

(4) If B is an open set or a closed set and A is a closed set, then M(, B, A) 
is continuous: If B is open B = U'=l 3k. M(y, U'=lIk, A) -> M(y, B, A) uni- 
formly in y since /( U'= +10k) -0 0 and M(y, Uo=o+13k, A) = M(y, B, A) - 
M (y, Uk=13k, A) is uniformly (in y) absolutely continuous according to (3), 
M (y, Uk=13k, A) is continuous, hence so also is M(y, B, A). If B is closed 
M(y, B, A) = 4(J) - M(y, BC, A), so that M(y, B, A) is continuous. 

(5) For any B E ? and closed A, M(., B, A) is continuous: There exists a 
B' C B such that ,u(B - B') = 0 and B' = U?k?=lbk where the bk are nested- 
increasing closed sets. Reasoning as in (4), M(., B', A) is continuous, and using 
the hypotheses of the theorem M(y, B - B', A) = 0 for all y E [c, d]. Hence 
M(., B, A) is continuous. 

(6) Finally, any measurable A can be written as A D Uk=lKak where the ak are 
nested-increasing closed sets and pu(A - U'=1ak) = 0. Hence M(y, B, U%'=ak) 

M(y, B, A) uniformly in y. Thus M(y, B, A) is continuous. This completes the 
proof of Lemma 4.1. 

I am indebted to H. Kesten for supplying parts (1) and (2) of the proof of 
this lemma and for further discussions concerning it. 

THEOREM 5.1. Suppose the hypotheses of Theorem 2.1 are satisfied, and n = 2. 
(In particular, let A c I be such that ,u(A) > 0 and ,u(B) = 0 implies MO (y, B, A) 
= 0 for all ye I). Then for each 0, r(., 0) has a continuous version (i.e.; there 
exists a function r' such that r' is continuous and r'( * ) = r( *, 0) a.e.). 

(The theorem is also true for all n > 2. This can easily be shown from the 
case n = 2 by the argument at (6.4).) 

PROOF. If the theorem is not true then there exists a 0' E e and a point xo E I 
such that 

(5.4) pi = ess lim inf=.x0r(x, 0') # ess lim supx_., r(x, 0') = P2. 

Let 

Dk = x x<f k = }- 2, -1) ,0,1,2,l 
(5.5) Dk={:ok<x<2kPlk 1 <0< p2/pl. 
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For some k, say k', I(r'(Dk') n A) > 0. Using (5.5) 

(5.6) Mr(.)r(.)(y, B, A) =-M,(.,.)(y, t-'(B), A) 

for almost all y E I. Let B' = {x: p3ok' _ x ?< P20k'+1}, where pi < P3 < P2. 

Then, using (5.6) and the inequality from (5.7), p3 may be chosen so that 
p k'+l < p k' Using (5.4) 

ess lim infx ,,, Mr.r(x, B', A) = 0, 

ess lim supx.x0 Mr.,(x, B', A) = /i(Dk' f A) > 0. 

(5.7) together with (5.6) contradicts Lemma 5.1. This completes the proof of 
the theorem. 

6. Proof of Theorem 2.1-Part 3. In this section the results of the previous 
two sections are combined in order to complete the proof of Theorem 2.1. 

Throughout this section we shall assume that the hypotheses of Theorem 2.1 
are satisfied. As in Theorem 4.2, it suffices to prove this theorem for the case 
n = 2, and to deal with the functions r. Throughout this section unless otherwise 
noted it is assumed that n = 2. This assumption will be removed at the end of 
the proof. 

Using Theorem 5.1, it is no loss of generality to assume that each r(., 6) is a 
continuous function on I, and we shall do so throughout this section. 

The line of proof is to establish that the Neyman-Bahadur factorization 
(see (2.2)) is an equality everywhere on A X I (for an appropriate A and co). 
Then Theorem 4.1 can be applied and the proof of Theorem 2.1 can be com- 
pleted. Several lemmas tending in this direction will be stated and proved. 

Let S c I be the set guaranteed by the hypotheses of the theorem, i.e. ,;(B) 
= 0 implies MO(y, B, S) 0 O for all y e I. Let T be a countable set of points 
such that T is dense in I, i.e. T = I. Choose T such that for each y E T the 
N-B factorization ( (2.3) or (6.2) ) is valid for almost all x e I. For any measurable 
set E let Ed denote the set of points of E which are points of density of E 

([7], p. 285-95). 
For any y e T, define Uy by 

U, = {X: X E Sd,+(X, y) E [p(Sd,y)Id}. 

The facts that A (Sd) = ,u(S) and tI{4(x, Sd)}d = ,(x, Sd)} imply ,(UY) 

,(S). Let A= nyeTUY. Then ,;(A) = g(S) > 0. A satisfies the assumptions 
of Theorem 2.1 in place of S. Note that A = Ad. 

LEMMA 6.1. There exists a continuous function co such that 

(6.1) r(x, O)r(y, 0) = w(4(x, y), 0) for all (x, y) ? A X I and all 0 ? 8. 

PROOF. By hypotheses 

(6.2) r(x, 0)r(y, 0) - w(4(x, y), 0) a.e. on A X T. 

For each 0, and v E 4 (A, T), let w (D, 0) = w(D, 0) if there exists (x0,o yo) e A X T 
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such that +(xo, yo) = v and equality holds in (6.1 ) for that (xo, yo). If there 
does not exist such a value (xo, yo) 8 A X T, then choose any (xo, yo) ? A X T 
such that 4(xo, yo) = v and define w (D, 0) = r(xo, 0)r(yo, 0). Note that for 
each 0 E 8, c(D, 0) = w(t, 0) for almost all r e q (A, T). 

Consider (xi, yi) E A X T and any fixed value 6' 8 8. Let (xO, yo) e A X T 
be a point such that (6.1) is an equality and O(xo, yo) = 4(x1, yD). If Xi is 
any neighborhood of xi, 4(xi, yi) is a point of density of the set 4(Xi n A, yi), 
i = 0, 1. Since (6.2) and thus (6.1) is an equality at +(x, yo) for almost all x and 
since r is continuous at xo then for every e > 0, p(xo, yo) = +(x1, yi) is a point 
of density of the set {v: I w(v) - r(xo, '0)r(yo, 0')I < e} = Z . Let We = 
4(x1 fl A, yi) n Ze. From the construction of A ,u(WE) > 0 which in turn 
implies 1M{x: +(x, yi) E We , x ? A} > 0. Thus there must be points in every 
neighborhood X1 of xi such that 

(6.3) fr(x, 0')r(yi , 0') - r(xo, 0')r(yo, 0')I < E. 

Since (6.3) holds for every e > 0, r(xi, 0')r(y1, 0') = r(xo, 0')r(yo, 0') and 
(6.1) is valid at (xi, y'). Thus for every 0 8 8) and (x, y) 8 A X T, (6.1) is an 
equality. 

Let Di -+ to, ; i ? (A X T) where (xi, yi) 8 A X T such that (xi, yi) 
(x, y) and O(xi, yi) = ci*lim*O wo(4(xi, y,), 0) = limj-.. r(xi, 6)r(yi, 0) = 

r(x, 0)r(y, 0). Hence lim00w(D, 6) exists, r Ef (A X T). If ro q(A X T), 
define co(vo, 0) by co(ro, 0) = lim?$0 co(?i, 0). 

Since A X T D A X I, co is now defined on all of 4(A X I). Furthermore, 
according to the previous paragraph, w( - 0) is a continuous function, and 
r(x, 6)r(y, 0) = w(Q(x, y), 0) for all x, y e A X I and all 6 8 E. This completes 
the proof of Lemma 6.1. 

Theorem 4.1 can now be applied to establish the existence of an interval K 
such that K n A is non-empty and such that r(x, 0) = C(0){r(x, 6o)}Q(O) for 
all x E K n A. The following lemma uses this hypotheses. 

LEMMA 6.2. Suppose x' eK f A, and the equation 

(6.4) r(x, 0) = C(8) {r(x, 60) } Q(0) 

is valid for all x e K n A and all 0 E 0. Then (6.4) is valid for all x E I and all 
688. 

PROOF. Let N be a neighborhood of x' such that y E N implies M(y, 
c(K n A, x'), K n A) > 0. The existence of such an interval is guaranteed by 
Lemma 5.1. For any 8 E E) and any y E N there exist points xi, X2 e K n A such 
that 4(xi, y) = +(x2, x'). Using (6.1) 

(6.5) r(y, 0)r(xi, 0) = r(x', 0)r(x2, 0). 

Using (6.4) and (6.5) 

(6.6) r(y, 0) = C(6)[r(x', 6O)r(x2, O)/r(xi, 60)]Q(O) = C(0){r(y, o)}Q(I) 

which is the desired equation on N. 
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Now, suppose N' = (c', d') is a maximal interval containing N on which 
(6.4) is valid. Let N" be a neighborhood of c' (or d') such that M(y, c(K n A, 
c'), K n A) > 0 (or M(y, O(K n A, d'), K n A) > 0). Proceed as in the pre- 
ceding paragraph to show that (6.4) is valid on N' U N". Therefore N' = I. 
This completes the proof of the lemma. 

The proof of Theorem 2.1 can now be easily completed. Suppose n > 2. 
Then there exists y,3 Y4, X**, Yn, ? 12 such that for every 0 e 0, 

n 

r(xi, O)r(x2 , 0) = w(A)(xl x 2 ; y3 ..., yn,), 0)/JI r(yi , 0) 

- CO(+(Xi, X2), 0) 

for almost all xi , X2 E I X I. 
Using the results of Sections 4 and 5 and the preceding results of this section 

r(x, 8) = C(0) {r(x, o) I}Q(O). Hence, 

(6.8) p(x, 0) = C(0) p(x, Oo) exp{Q(0) ln r(x, Oo)}, 

which is the desired factorization. This completes the proof of Theorem 2.1. 

7. Corollaries to the theorem. In this section several corollaries are stated 
which weaken in some fashion the hypotheses of Theorem 2.1. The corollaries 
given here by no means exhaust the possibilities for results of the general type 
of Theorem 2.1 which have weaker hypotheses than that theorem. They should 
be sufficient, however, to guide the reader in search of other possible corollaries 
to Theorem 2.1. These corollaries also serve to amplify understanding of the 
situation when the presence of sufficient statistics implies the densities are of 
exponential type. 

The proofs of these corollaries mainly consist of minor revisions in the proof 
of Theorem 2.1. These revisions will only be sketched, rather than given in full. 

COROLLARY 7.1. Let {p(x, 0): 0 E 8} be a family of probability distributions 
on an interval I, which satisfy Assumption 2.1 on I. Suppose there exists a set 
A c I such that ,u(A) > 0, and there exists a continuous function 4: A X I -E 

(where A is given the topology inherited from I) and a function X such that for 
some o0 E c, 

(7.1) p(X1, X)p(X2, 0) = p(X1, 00o)p(x2 X 00)w(4)(X1 X X2), 0) a.e. (M2(A X I)) 
(i.e. 0 is sufficient for p on A X I). Suppose ,u(B) = 0 implies M(z, B, A) = 0 
for all z e I. Then { p(x, 0) } is a one-parameter exponential family. 

PROOF. The reader may check that the proof of Theorem 2.1 uses only the 
hypotheses of this corollary, rather than the somewhat stronger (though more 
natural) hypotheses of Theorem 2.1. 

Corollary 7.1 can also be applied in the case n > 2 if, for instance, 4) is 
sufficient for ]I z8 p(Xi, 0) on A X I X S, S c In-2, Mun-2(S) > 0, for an ap- 
propriate set A. For then as in the proof of Theorem 2.1 (6.7) there is a ir 8 S 
such that 4)( , *, ir) is sufficient on A X I for p(xi, 0)p(x2, 0). 
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It may be that the hypotheses of Theorem 2.1 (or Corollary 7.1) do not hold 
(in the case n = 2) for all of I X I, but do hold on Ik X Ik where the Ik are 
intervals. (Sometimes it is also desirable that I = U7k[7k denotes the closure of 
IkI.) Many corollaries of Theorem 2.1 can be derived which deal with this type 
of situation. Only a few of the simplest of such results will be given in Corollary 
7.2. To simplify matters, with no great loss of generality, only the case n = 2 
will be treated. 

COROLLARY 7.2. Let Ik , k = 1, 2, * m be a set of disjoint intervals. Let { p(x, 0) 
be a family of probability densities on Ulk, and let p(xi, X2) be sufficient for 0 on 
the basis of xi, X2 . The following results are true: 

(1) If m < oo, and the hypotheses of Theorem 2.1 are valid on Ik X Ik k = 

1, 2, * , m, then {p} is (at most) a (2m - 1)-parameter exponential family. 
(2) In addition to the special hypotheses of (1) if I = UIk, if p(, 6) is con- 

tinuous and if 0 < p(., 0) < oX for each 0 then p is (at most) an m-parameter 
exponential family. 

(3) If m < oX and if there exists a set A C Ik for some k = 1,2, . , m such 
that ,u(A) > 0; 4 is continuous on A X Ik for each k; and ,u(B) = 0 implies 
M(z, B, A) = 0 for all z E UIk (not necessarily Ulk), then { p} is (at most) an m 
parameter exponential family. 

(4) If in addition to the special hypotheses of (3) I = Ulk,p(*, 0) is continuous, 
and 0 < p(*, 6) < oo for each 0 then {p} is a 1-parameter exponential family. 

(5) Suppose m < o? and the special hypotheses of (3) are satisfied. If in addi- 
tion for all k = 2, 3, *, 

(7.2) u [4(A, Ik) n (U o(A, I))] > 0 

then { p} is a one parameter exponential family. 
PROOF. 

(1) On each interval Ik , p(x, 0) = C(6)p(x, 6o) {r(x, O)1Q(O), xcIk. If 
for example, the statistic 4 is trivial (see (3.10)) in every neighborhood of 
Ij X Il, j - 1, then the C(0) and Q(6) may be chosen arbitrarily (a total of 
2m choices) on each Ik, except that the condition f p(x, 0) dx = 1 must be 
fulfilled. This leaves 2m - 1 free parameter choices. It is then easily checked 
that { p} is (at most) a 2m - 1 parameter exponential family. (It is not necessary 
for this result that UIk = I. ) 

(2) The condition of continuity (and UIk = I) imposes m - 1 additional 
restrictions on the choice of parameters in 1 when 0 < p(x, 0) < oc at the end- 
points of the intervals Ik (which can easily be ascertained from 0 on Ik X Ik) 

This leaves (at most) an m-parameter exponential family. 
(3) Although the proof of Theorem 2.1 is not constructed specifically for the 

situation in this corollary, it is not hard to check that in this situation, 

(7.3) r(x, 0) = C(k, 0)(r(x, 0))Q(O), x E Ik. 

The constants C(., 0) can be arbitrarily chosen, except that f p(x, 6) dx = 1. 
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This leaves (m - 1)-parameter choices, which together with the choice of 
Q(0) make {p} an m-parameter exponential family. 

(4) The proof of this is just like the proof of (2). 
(5) The condition (7.2) implies that on each interval Ik, { p} is a 1-parameter 

exponential family. (7.2) also implies that the choice of C(0) and Q(O) for the 
interval I, determines the choice for I2 then for 13 , and so on inductively. The 
choice of C(B) in turn must be dictated by the condition f p(x, 0) dx # 0. 
Hence {p} is a 1-parameter exponential family. This completes the proof of the 
corollary. 

It should be noted before concluding these considerations that even if +(x, y) 
does not satisfy any of the preceding hypotheses, a transformation of the range 
of (; and/or of its domain, I, may yield a new problem in which ( does satisfy 
the desired hypotheses. To be more precise there may exist appropriate func- 
tions a, A3 such that + = a(0((3(x), A3(y))) is continuous as a function of A3(x), 
A3(y). If a and A3 are appropriately chosen-a one to one and A almost 1-1 and 
measure preserving are sufficient conditions-then ( sufficient for { p (x, 0) } implies 
+ sufficient for { p (f, 0) } (in the Neyman-Bahadur factorization). If A is almost 
1-1 then A-' exists a.e., and {p(f3, 0)} is an exponential family satisfying (6.4) 
if and only if {p(x, 0)} is a one-parameter exponential family. 

8. An important special case: (p(xi, * , xn) = JI =/(xi). This section 
will begin with an example of perhaps the most useful transformation of the 
type discussed at the end of Section 7. Suppose O(x1, * , xn) = 8=i V(xi) 
as is often the case in many statistical problems. It will be shown using a change 
of variables that there is always a problem equivalent in the sense of the preced- 
ing section in which At(x) is monotone non-decreasing. This transformation is 
the first step in the proof of a "local" theorem regarding sufficient statistics of 
the type ( = E jV in which continuity of 1/ is not hypothesized. 

For x E I (assume I is bounded) let 

(8.1) t(x) = At{t: EI, AI(t) < AV(x)} + ,u{t: eI, At(t) = J(x),# ? x}. 

Let 

(8.2) )'(Y) = 1(U'(y)), r(y, 0) = r(t-'(y), 0) 

(where r is defined as before by (2.4)). It is necessary to prove 
LEMMA 8.1. If 4 = E i/ is sufficient for p on the basis of n independent observa- 

tions, then t and r are well defined by (8.2) and (8.1) almost everywhere 4 (ln), 

V/ is sufficient for {Ir, and {I is a one-parameter family satisfying (6.4) if and only 
if the family I r} is also. 

PROOF. The only problem with the definition of + occurs if t(xi) = t(x2) 
but JI(xI) 0 Jt(x2). Consider the collection of equivalence classes 8(x) = 

{ : t(t) = t(x)}. If J/(8o) is not a point, then there is an interval i of positive 
length (not necessarily open) such that V/(8o) C i and x e 8o implies A/(x) z i. 
Hence {I8: A/( 8) is not a point} is countable. This establishes that (8.2) defines 
+ uniquely except perhaps for a countable set of points (which will be discon- 
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tinuities of 4). For each 0 there exists a z e I"-1 such that 

(8.3) r(x, 0) (1/k)w(X + *1'(x), 0), a.e. Ay) 

where k llI=2r(zi, 0), X _ n=2 p(zi). It may even be assumed that a 
version of r(., 0) has been chosen such that (8.3) is valid everywhere. Then 

(8.4) r(y, 0) = r(t'(y), 0) = (1/k)w(X + 1/(tU1(y)), 0) 

is uniquely defined except perhaps for a countable number of points. 
It can easily be checked that the transformation t is measure preserving in the 

sense that for any Borel set B, ,i(t-'(B) ) = ut(t(t'(B) )). It follows that 

(8.5) tIr(x , 0) = II r(t'(xi), 0) 
= CO( 0'(tF'(xj), 0) = co(Z i(xj), 0), a.e. 

So E , is sufficient for { }. Similarly {I} is a one parameter exponential family 
if and only if {r} is. This completes the proof of the lemma. 

It should be clear that in the preceding considerations we have nowhere used 
the fact that I is an interval, only that it is bounded. If I is unbounded, a slightly 
different definition of t may be used to yield a transformation with the desired 
properties. 

It is clear from Corollary 7.2 that it cannot be expected for general p that r 
is a one parameter exponential family on all of I. However under very weak 
conditions it can be asserted that r is locally a one-parameter exponential family. 
The following theorem contains this result. 

The hypotheses of Theorem 8.1 may seem at first a bit strange. The difficulty 
is that Theorem 8.1 is stated without the assumption that AI(x) be monotone 
non-decreasing. As was shown in the first part of this section there is no loss of 
generality in assuming that A/ (x) is monotone. Theorem 8.1' consists of the state- 
ment of Theorem 8.1 specialized to the case where AI(x) is monotone. The first 
step of the proof of Theorem 8.1 is to show by using the transformation t (8.1) 
that the conditions of Theorem 8.1 imply there exists an equivalent problem 
satisfying the conditions of Theorem 8.1'. 

THEOREM 8.1. Let {p(x, 0) } be a family of probability densities on a measurable 
subset J of E' satisfying Assumption 2.1 on J. Suppose O(xi, .., x.)= 

,L1 J(xi) is sufficient for {p}. Suppose there is a subset A c J with ,u(A) > 0 
such that for any B c A(A), Au(B) = 0 implies Ag(-'(B)) 0. Let xo ?J be any 
point such that for all e > 0: 

(8.6) ,tF'{x: x ? ,6(J), 0 < ,6(x) - AV(xo) < e}} > 0 

and 

ju{1O_{x:x E (J),O < AV(Xo) - (x) < Vx) < E}} > 0. 

Then there exists a neighborhood Q of J(xo) such that p is a one parameter exponential 
family on rV'(Q n A(J)). 

A simpler (though at first glance less general) statement of the preceding is 
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THEOREM 8.1'. Let {p(x, 0) } be a family of probability densities on an interval 
I c E', satisfying Assumrption 2.1 on I. Suppose ,(x1, * , xn) = E V(xi) is 
sufficient for {p} where 41 is monotone non-decreasing. Suppose +/'(x) > 0 on a 
set of positive measure A C I. Let xO be a point such that 41 is continuous at xo . 
Then there exists a neighborhood K of xo such th-at { p} is a one-parameter exponential 
family on K, having the form (8.10). 

PROOF. By transforming the real line according to t(x) = x/(1 + Jxl) we 
may assume that the set J is bounded. Then the transformation t of (8.1 ) can be 
used. It is easily checked using Lemma 8.1 that the point xo of Theorem 8.1 
becomes an xo of Theorem 8.1', and similarly the set A [or rather 4I(I'(A))] 
transforms into an interval A appropriate for the hypotheses of Theorem 8.1'. 
The conclusion of Theorem 8.1' is slightly stronger than the transformation by 
t of the conclusion of Theorem 8.1. (It may be stronger at points x such that 
'U(V (4(x) )) > 0. ) 

The hypotheses of Theorem 8.1' will be assumed throughout the remainder of 
this proof except where otherwise noted. It will also be assumed that n = 2, 
which is no loss of generality. The proof of Theorem 8.1' follows approximately 
the outline of the proof of Theorem 2.1 with only a few major differences. Where 
it is possible, the proof of this theorem will consist of references to the proof of 
Theorem 2.1. 

The first step in the proof of Theorem 8.1 is an analog to Theorem 5.1; namely 
that for each 0 there is a version of r(x, 0) -which is continuous at any continuity 
point of A1. To show this, let yi, i = 1, 2, * * *, be any sequence in I such that 
yi -* yo where i1 is continuous at yo . Let a- be a continuous function defined on 
I such that a(yi) = i1(yi) i = 0, 1, 2, *.. 

Using Lemma 5.1, for any B, 

(8.7) limi,, Mm (yi, B, A) = limi,,, Mm,(yi, B, A) 

= Mmr(yo, B, A) = Mmp(yo, B, A). 

Hence M(., B, A) is continuous at yo. Using the procedure of the proof of 
Theorem 5.1 it is then easy to show that r is continuous at yo . 

We now turn to the analog of Lemma 6.1. It will be shown there exist versions 
of Co, r, and i1 such that the N-B factorization is an equality on A' X J, where 
A' and J are suitably chosen. The first main change from Lemma 6.1 lies in the 
choice of A and T. In this case let A = {x: x E sd, A(x) E {,(Sd)}d} where S is 
any set with ,u(S) > 0 such that B c S. ,u(B) = 0 implies ,uQ(,J'(B)) = 0. In 
particular, S can always be a set of the form S = {x: e < '(x) < 1/e} for some 
e > 0. Let T be the set of continuity points of i/ such that y E T implies the 
N-B factorization is valid for almost all x E I. The proof that 

(8.8) r(x, 0)r(y, 0) = w( (x, y), 0), (x, y) E A X T, 0 Ec 

is almost word for word the same as the proof of the analagous fact in Lemma 6. 1. 
Let xo, yo E A X T (as defined in the preceding paragraph). Since Ad = A and 
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Td = T, for any neighborhood Z of xo, yo, 

,={: 3(x, y) Zf n (A X T): *(x) + 4(y)= } 

contains an open interval of positive length about the point (xo, yo) ([5], p. 68). 
If Z is chosen small enough, P eB implies Ijo(D, 0,) - Co( (XO, yo), 0)1 < E. 

Hence co(., 0) is continuous at Po = O(xo, yo). 
Again using [5], p. 68 there exists a non-empty set A' c A and an interval 

J c I such that (A )d = A' ((A') > 0) and such that 4(A', J) c K where K 
is a closed interval contained in the interior of 4(A X T). w is uniformly con- 

tinuous on 4(A', J), hence if xl, y, E (A' X J), lim?+.,(^1,) w (D, 0) exists. If VI 
is chosen so as to be continuous from the left (or right) it is then easily checked 
using the previous two paragraphs that lim+z- r(y, 0) always exists; and if r 
is also chosen to be continuous from the left (or right) the N-B factorization 
(8.8) is valid everywhere in A' X J. This analog of Lemma 6.1 is satisfactory 
for the proof of Theorem 8.1'. 

It is a somewhat tedious matter to alter the statement and proof of Theorem 
4.1 to fit the conditions of the theorem at hand. I will not do this in detail here. 

The continuity conditions of i1 and r on A' and J and validity of the N-B 
factorization on A' X J which have been previously established are sufficient 
to prove analogs of Lemmas 4.1, 4.2, and 4.3, and from there to establish that 
there exists a sufficiently small open set 0 such that O n A' 5 0, 

(8.9) r(x, 0) = c(0)[r(x, 0o)]Q(O), a.e. O n A'. 

Since M(z, B, A') is continuous at any continuity point of ,1, the method of 
Lemma 6.2 applied in a sufficiently small neighborhood N of z proves that r is 
an exponential family on that neighborhood. It must, in fact, be true that in 
such a neighborhood 

(8.10) r(x, 0) = c(O)eQ(O)1(X), a.e. (N). 

This completes the proof of Theorems 8.1 and 8.1'. 
In particular, when ,1 is monotone non-decreasing there will be a sequence of 

disjoint open intervals Ii such that {p} where restricted to any given Ii is a 
one-parameter exponential family. Corollaries analagous to Corollary 7.2, 1-5, 
are possible. For instance, suppose 

(8.11) M{'k(k(IJ, Ik)) ln (i x I;)} > o 
and /'{4l7(qfi(Ii, Im) n (ii x Ik)} > O. 

Then {p} is a one-parameter exponential family on Ii U Ij. 
The considerations of the preceding paragraph appropriately transformed by 

t-U of course also apply if the hypotheses of Theorem 8.1 are satisfied. 
Recall from Example 3.3 that some hypotheses such as that concerning the 

subset A in Theorem 8.1 is necessary. It can thus be seen that when qs = t' 

is sufficient Theorem 8.1 and its corollaries give a nearly complete characteriza- 
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tion of the situation when it is possible to conclude that the densities are locally 
exponential families. 
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